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Multiple time-scale turbulence model for 
wall and homogeneous shear flows 
based on direct numerical simulations 
Yasutaka Nagano, Masahide Kondoh and Masaya Shimada 
Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan 

The k-8 model is widely used and has proved effective in predicting wall shear layer 
turbulence. These models, however, perform poorly in prediction of homogeneous shear 
flows. Such inconsistency is not caused by crudeness of the eddy-viscosity apprbximation, 
but by inappropriate estimation of the relevant time-scale of turbulence. Thus, to settle this 
problem, we propose a low-Reynolds number-type "multiple time-scale" turbulence model 
on the basis of recent direct numerical simulations (DNS) of turbulence. Making a proposed 
model that is applicable to prediction of near-wall turbulent flows without the controversial 
wall functions and on reproducing the wall-limiting behavior of turbulence quantities is the 
emphasis. The proposed model has been tested in wall shear flows with and without a 
pressure gradient. We also tested the present model in homogeneous flows with and 
without mean strain. Assessments based on the latest DNS data and measurements 
indicate that 'the present model works well, regardless of the flow regimes. © 1997 by 
Elsevier Science Inc. 

Keywords: turbulent flows; turbulence modeling; computational fluid dynamics; multiple 
scale modeling; low-Reynolds number models; near-wall flow; homogeneous shear flow; 
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Introduction 

To solve various complicated flows of technological interest, it is 
now essential to construct a universal, or, more specifically, a 
multipurpose turbulence model. One of the most basic problems, 
however, is how to link computations between wall and homoge- 
neous shear flows with a single turbulence model. This has been 
attempted using the second-order closure model (Abid and 
Speziale 1993; Hanjali6 1994) or algebraic-stress model 
(ASM)/nonlinear eddy-viscosity model (Gatski and Speziale 
1993; Abe et al. 1997), and reasonable results have been ob- 
tained in predicting complex flow domain, although models at 
this level for both wall and homogeneous flows are still very 
much a research area. For industrial purposes, the most popular 
turbulence model is that which employs the eddy-viscosity con- 
cept, as represented .by the k - e  model. Until now, the k -e  
model has been developed mainly for wall-bounded low calcula- 
tions (Nagano and Tagawa 1990; Myong and Kasagi 1990), and 
the direct numerical simulation (DNS) data of wall turbulence 
(Kim 1990; Spalart 1986, 1988) obtained have furthered model 
prediction accuracy in the vicinity of a wall (Rodi and Mausour 
1993; Nagano and Shimada 1993, 1995). However, it is well 
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known that the eddy-viscosity formulation employed in conven- 
tional k -e  modeling; i.e., v t = C ~ k 2 / e ,  fails in a homogeneous 
shear flow, and that there is a need to reduce a value of the 
model constant C, empirically to correct predictions (Suzuki et 
al. 1993). To remove such defects, recent studies have proposed 
revised k - e - t ype  turbulence models for homogeneous shear flows. 
Tzuoo et al. (1986) proposed a zonal-modeling method, in which 
a flow field is divided into a number of zones, and a final 
turbulence model is constructed as an assembly of local models 
optimized in each zone. Yoshizawa and Nishizima (1993) pro- 
posed a nonequilibrium k - e  model that gives the effective 
eddy-viscosity as a function of the Lagrange derivative of turbu- 
lent energy and its dissipation rate. These models provided good 
results in calculating homogeneous shear flows. 

On the other hand, Hanjali~ et al. (1980) proposed a multiple 
time-scale (MTS) concept in the eddy-viscosity-type turbulence 
model. In their modeling, a turbulent energy spectrum was 
divided into several wave-number (or frequency) regions, and the 
characteristic time-scale was evaluated independently by the 
turbulence quantities defined in each region. The eddy-viscosity 
was estimated by the time-scale of larger (lower wave-number) 
eddies. Schiestel (1987) further developed the MTS turbulence 
model on a second-order closure level and discussed the physical 
meaning of each term in a transport equation valid in each split 
wave-number region. However, a set of modeled equations be- 
comes so complicated that much effort is needed to make the 
model actually function. Only lately has the MTS turbulence 
model using an eddy-viscosity concept similar to Hanjali6 et al. 
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(1980) been improved by NASA researchers (Kim and Chen 
1989; Kim 1991; Liou 1992; Kim and Benson 1992; Duncan et al. 
1993) to analyze complex flows. However, they gave little atten- 
tion to the near-wall modeling that has developed in recent 
low-Reynolds number k-~ models. Kim and Chen used the wall 
functions modified for the: MTS model inside the near-wall layer. 
Kim connected the dissipation rate equation in the MTS model 
away from a wall to its algebraic formulation in the near-wall 
region and formed a sort of two-layer MTS model. However, the 
Kim model reportedly showed differences from the DNS data in 
predicting most basic fully developed channel flows (Michelassi 
1993). 

In this paper, we develop a low-Reynolds number MTS 
model using the eddy-vi,;cosity concept to solve both wall and 
homogeneous-shear flows. Because near-wall and low-Reynolds 
number effects are incorporated in the model, the exact wall- 
limiting behavior of various turbulence quantities is reproduced. 
Furthermore, the present model is found to provide solutions in 
good agreement with the DNS data on homogeneous shear flows 
(Rogers et al. 1986; Matsumoto et al. 1994). We also present the 
optimum variation in the characteristic time-scale in various wall 
and homogeneous-shear flows. 
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Concept of multiple time-scale 

The original concept of MTS was proposed by Hanjali~ et al. 
(1980). A sketch of a divided turbulent energy spectrum at large 
Reynolds numbers is shown in Figure 1. The energy spectrum is 
split into two wave-number regions; i.e., the production range on 
the lower side and the transfer range on the upper side. Symbols 
kv  and k r in the figure represent the turbulent kinetic energy 
belonging to each wave-number region, and the sum of these 
must coincide with the total turbulent kinetic energy k as 
follows: 

k e + k r = k (1) 

Inherent to this MTS concept are the restrictions on turbu- 
lent production Pk, which affects only the production region, and 
energy dissipation rate er, which occurs only in the transfer 
region. The split spectral regions are connected by the energy 
transfer rate e e, which symbolizes the energy cascade mecha- 
nism of the turbulent motion. 

In the original concept proposed by Hanjali6 et at. (1980), the 
energy spectrum is divided into three regions, and the e r is 

N otation ~, u,. 

C[o skin-friction coefficient, (7/0 = "rw/(pU2/2) U=, U 0 
C v static _pressure coefficient, Cp = 2 ( P -  u8 

Po)/(PUo 2) u, 
Cp1,CpE,Crl, model constants in ep- and ST" 
CT2, CT3 equations x, y, z 
C~, C, model constants for eddy-viscosity v t 
f e l , f P Z , f r l , f r 2  model functions in e e- and er-equations Y+'Y* 
ft model function for turbulent diffusion 
frl, f~2, f~l, fw 2 elements of model functions 
f ,  model function for wall effect 

Greek h channel half-width 
K, k nondimensional acceleration parameter and 

total turbulent kinetic energy, K = ~ij 
v(dU®/ dx) /U= 2, k = ~ u ~ / 2  

~', ~'T 
k e tud~ulent kinetic energy in lower-wave- ep 

number region, ~q 

kp := fo E(K')dK' 0 
K , K  t 

k r turbulent kinetic energy in higher-wave- K'c,K' a 
number region, v, v t 

K t 

k r = f.,  aE(K') dK' I l k '  I ]  8 
Kc 

n exponent coefficient P 
P, if0 mean and reference static pressures irk, tr~ 

T c ,  T k 

Pk energy ~roduction in kv-equation, Pk = %, 
--1A!iU j OUii/OX j 

Re~ Reynolds number, Re~ = h u J v  
R t turbulence Reynolds number, R t = 

k 2 / ( V e r )  
R 0 momentum thickness Reynolds number, R 0 P 

= U®O/v T 
S me, an shear rate, S = ~O/ay  w 
t time 0 

mean velocity component in streamwise 
direction ( )+ 

mean and fluctuating velocity components 
in xi-direction 
free-stream and reference velocities 
Kolmogorov velocity scale, u 8 = ( v e t )  1/4 
friction velocity, u~ = 
streamwise, wall-normal, and spanwise co- 
ordinates 
dimensionless distance from wall, y+= 
y u J v ,  y* = y u J v  

Kronecker delta 
dissipation rate of k 
energy transfer rate 
Kolmogorov length scale, -q = ( v 3 / e r )  1/4 
momentum thickness 
Kfirmfin constant and wave number 
cut-off and Kolmogorov wave numbers 
kinematic and eddy-viscosities 
pressure diffusion terms in kr- and e r- 
equations 
density 
model constants for turbulent diffusion 
time-scales, % = k e / ~  e, r k = k / e  r 
wall shear stress 

Subscripts and superscripts 

production region 
energy transfer region 
wall 
reference and initial points 
mean 
normalized by wall parameters (u,,v) 
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Figure 1 

Production 
region 

i 
R c 

Wave llumber ~t 

Division of energy spectrum 

f 
ke = Jo E (g) dx' 

kr = f E (~') d,c' 

~ a a s f e r  region , 

distinguished from the dissipation rate e. However, the highest of 
these three (the dissipation region) has no turbulent energy, 
because whatever turbulent energy flows into it is immediately 
dissipated. Hence, the only regions capable of defining the char- 
acteristic time- or length-scale are the lower two, where e r is 
substantially equivalent to e. Kim and Chen (1989) developed 
their MTS concept on the two-split energy spectrum, and the 
energy sink of the spectral transfer region e 7- is regarded as the 
energy dissipation rate. The MTS concept of our investigation, as 
explained above, followed this simpler idea. 

Eddy-viscosity description 

The eddy-viscosity formulation employed in the standard k - e  

model is 

= k2 
(2) 

where C~ is a model constant and generally takes the value 0.09. 
Equation 2 consists of two characteristic turbulence scales; i.e., 
characteristic velocity scale v~- and time-scale k / e  r .  In homoge- 
neous shear flow, however, it is well known that this formulation 
cannot adequately represent the value of Reynolds stress when 
experimental data of k and e r are substituted in Equation 2 
(Tzuoo et al. 1986; Suzuki et al. 1993). This inconsistency is 
mainly attributable to the inappropriate value of C~ = 0.09 de- 
termined by the equilibrium state of energy production and 
dissipation in the constant stress layer of wall turbulence. If the 
value of C~ is decreased, Equation 2 predicts Reynolds stress 
correctly in the homogeneous shear flow (Suzuki et al.). This fact 
indicates that appropriate variations in characteristic time- or 
length-scale are necessary in analyzing flow fields deviating from 
the local equilibrium. 

Because eddy-viscosity is dominated by large-scale turbulent 
motions and is not correlated directly with the dissipation rate, it 
is argued that the dissipation rate 8 r in Equation 2 must be 
replaced by the energy transfer rate e p  related to large-scale 
motions (Kim and Chen 1989; Kim 1991; Liou 1992; Kim and 
Benson 1992; Duncan et al. 1993): 

k 2 
v t = C ,  - -  (3) 

ep 

In the constant stress layer of wall turbulence, Equation 3 is 
consistent with Equation 2 because the local equilibrium condi- 
tion enables ep  = e r .  Under differing flow conditions, however, 
e e  can be expected to vary in accordance with deformation in the 
energy spectrum. 

On the other hand, Hanjali6 et al. (1980) proposed an eddy- 
viscosity description using a low wave-number time-scale k e / e e  

and velocity scale v~- as follows: 

kkp 
v t = C,~ - -  (4) 

~p 

In the present MTS modeling, we employ Equation 4 in the 
hope of achieving much more flexible performance in v t than 
that obtained from Equation 3 because variable parameters 
k e / k  and e e / e  r are included in Equation 4. As for the model 
constant C~, Hanjali6 et al. (1980) adopted C~ = 0.09, which is 
identical with the value of C~ in the standard k - e  model, 
Equation 2. However, a lower value of v t in a log-law region of 
the wall-bounded flow may be expected, because in this region, 
ep = er  (as explained above) and kp < k would seem to follow. 
Thus, considering the following relation derived from Equation 2 
and 4: 

k p  e r (5) 
Cv. = C ,  k e e  

we take the model constant C~ as the larger value. Note that, in 
the proposed MTS model, C~ becomes a function of k e / k  and 
e e / e  r ,  both of which are expected to reflect the flow condition 
correctly for the coefficient C~ that is taken as a constant value 
in the conventional k - e  model. 

Model equations 

In view of the physical concept in Figure 1, it is evident that the 
energy transfer rate e e is an energy sink term for the production 
region, while simultaneously being a source term for the transfer 
region. Hence, the transport equations for turbulent kinetic 
energies in each spectral region are given as follows: 

D t  axj 

D k T  ° [(  v 
Dt ~j 

~k I axj j 

vt \ akr ] 

(6) 

(7) 

whereP k =-uiuiOUi/Ox j is the energy production rate at- 
tributable to the mean velocity gradient, and D / D t  = a / O t  + 

~ . O / O x j  implies the substantial derivative. Turbulent diffusion 
terms are based on the gradient diffusion model where a k is a 
model constant, and f t  is a model function representing increas- 
ing turbulent diffusion in the near-wall region, as observed in 
DNS data (see Nagano and Shimada 1993, 1995). The symbolized 
IIk is a pressure diffusion term of the kinetic energy equation. 

The energy transfer e e and dissipation rate e r equations can 
be modeled by using the characteristic time-scales k r / e e ,  and 

348 Int. J. Heat and Fluid Flow, Vol. 18, No. 4, August 1997 



k T / e  T ill each of the spectral region as follows: 

Dt O X j ~ ~-~j .] + C Pl f P1 k'--- S -  ~p  

DeTDt OxyO v +ft ~ bx i J + CT,fT1 k--'-T'- 

4 
- Cr2fr2 ~rr + H~ 

(8) 

(9) 

where  Cp1 , Cp2 , CT1 , CT; ! are models  constants,  and fP1, fP2, 
fT~, fr2 are model functions representing low-Reynolds number 
and/or near-wall turbulence. The symbolized II~ is a pressure 
diffusion term of the dissipation-rate equation. 

The Reynolds stress formulation can algebraically be ex- 
pressed as 

(10) 
[OU i O•] 2 

--UiUl = Pt/~c3Xj-- + ~Xi ] -- -3 ~ijk 

and the eddy-viscosity is given from Equation 4 as follows: 

kkp 
v t = Cvf ~ - -  (11) 

8p 

where f.  denotes a model function representing the wall- 
proximity effect. 

These equation are solved with the mass conservation and 
momentum conservation equations: 

(12) 
or, 
- - = 0  
Ox i 

(13) 
D ~ I O P O ( O ~ )  

+ - -  1; -- UiU j 
Dt p Ox i Ox i 

Determination of model constants 

For a fundamental construction of the present MTS model, we 
must find some physical relation among model constants under 
basic flow conditions. The constant stress layer (log-law region) 
of the wall turbulent flow and the homogeneous decaying flow 
are the best candidates for such a purpose. 

In the constant stress layer of the wall turbulent flow, well- 
known approximation equations are given by 

Pk = ee = eT (14) 

- f i -v  = u ,  z ( 1 5 )  

aU u, 
- -  - -  - -  ( 1 6 )  
Oy Ky 

Here, u, is the friction velocity, and K is the Khrmfin constant 
generally taking a value of 0.4 in the fully developed channel 
flow. 

Because the structure parameter ( - - ~ / k )  takes a value of 
about 0.3 in this layer, Equation 2 with C¢ = 0.09 gives the 
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correct value of the eddy-viscosity. Hence, from Equation 2, 4 
and 14, we have 

ke 0.09 
k C, (17) 

Consequently, ke/k takes a constant value in the constant stress 
layer of the wall turbulence. 

By substituting Equations 14-16 for the e e Equation 8 and 
the e T Equation 9, we deduce the following relations for model 
constants: 

ke (Cp2 -- Cp1)2~:Cv 
- -  = ( 1 8 )  

k K 4 

k T (Cp 2 -- Cp1)(CT2 -- CT1)O-:Cv 
- -  - ( 1 9 )  
k K 4 

From Equations 18, 19, and 1, a combined equation for model 
constants employed in e e Equation 8 and e r Equation 9 is 
derived as follows: 

K 4 

(Cp2 - Cp1)(Cp2 - Cpl + CT2 -- CT1 ) = ~ : C v  (20) 

Also, by substituting kp/k given by Equation 17 for Equation 18, 
we have the following C~ equation in the constant stress layer: 

~/0.09 K 2 

C v ~- (Up2 _ Cp1)(y e (21) 

Here, we emphasize that Equations 18, 19, and 21 must be 
reconciled to adequately predict the constant stress layer. 

In the homogeneous decaying turbulence, on the other hand, 
it is well known from much experimental data that the decay law 
of turbulent kinetic energy is given by 

k ~xx-" (22) 

where x is a coordinate of flow direction, and n is an exponent 
coefficient taking the value 1 ~ 1.25 in the initial period 
(Batchelor and Townsend 1948a, Comte-Bellot and Corrsin 1966), 
and 2.5 in the final period (Corrsin 1951). 

The decay law (22) is extended to the divided turbulent 
energy kp and k r as follows (Hanjali6 et al. 1980): 

ke=A ~ x - ' ,  k r=A ~ x -" (23) 

where A is a numerical coefficient. It is safe to say that parame- 
ters ke/k and kr /k  take constant values until the final period of 
decay, because the energy cascade motion of turbulent eddies 
holds even in the final phase of dissipation (Hanjali6 et al. 1980). 
However, it should be noted that the disappearance of k e or k r 
is thought to eliminate the energy cascade mechanism that is 
abridged as e e in the present MTS model equations. 
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In the homogeneous decaying turbulent flow, the energy 
production and diffusion can be ignored entirely, so that the 
governing equations are written in the following simple forms: 

_ dke 
U--~x = - e e  (24) 

(25) 

_ dkr  
U ~ = e p  - e T (26) 

der ~P~T 82T 
V --~-x = C T I - ~ T  -- C T 2 f T 2 -'~T (27) 

Here, we put fT1 = 1 in conformity with conventional low- 
Reynolds number k - e  modeling (Nagano and Hishida 1987). 
Because Equations 24 and 26 with Equation 23 yield the 
following asymptotic solutions for ee and er: 

_ _  ke 
8 e =AU---ffnx -(n+l) , er = AOnx- (, +1) (28) 

we find that an important relation holds in the homogeneous 
decaying turbulent flow: 

ee kp 
e r k (29) 

Having an alternative form k e / e  e = k / e  r, Equation 29 indicates 
that the characteristic time-scale for eddy-viscosity in the present 
MTS model is identical with the time-scale of the standard k - e  
model in the homogeneous decaying turbulent flow. 

Substituting Equations 23 and 28 for Equations 25 and 27, we 
have a set of equations as follows: 

n + l  
Ce2fe 2 = (30) 

n 

k n + l  
(CT2fT2 -- CT1)-~T + CT1 = n (31) 

By using the above set of equations, we can determine model 
functions re2 and .fr2 so that they take value unity in the initial 
period of decay where the exponent coefficient n = 1.1 and vary 
from unity in the final period of decay where n = 2.5. The model 
function fe2 is immediately determined from Equation 30; 
whereas, fr2 cannot readily be obtained from Equation 31. 
Assuming that the ratio k r / k  is constant during the decay, we 
derive the following relation from Equations 30 and 31: 

Cr2fT 2 -- CTI CT2 -- CT1 
= ( 3 2 )  

(n + 1) /n  -- CT1 Ce2 - Crl 

which yields a convenient equation for fT2" 

CT2fT2 = -- CT1 Cp2 - CT1 + Crl (33) 

Consequently, the form of fT2 c a n  be settled using the predeter- 
mined values of model constants Crl, CT2, Cp2, and decay 
exponent n. 

For obtaining a complete set of relational equations among 
model constants that ensure an adequate solution in both the 
constant stress layer (i.e., wall turbulence) and homogeneous 
decaying flow (i.e., free turbulence), it is necessary to combine 
the equations we derived on the condition of both flows. First, we 
assume that the model function fr2 in Equation 31 is equal to 
unity in the log-law region where the turbulence level is suffi- 
ciently high. Then, by substituting Equation 19 for Equation 31 
to eliminate k r / k ,  we have 

K 4 

(Cp2 -- Cp1)(Cp2 - CT1 ) = o.2Cv (34) 

From comparison of Equation 20 with Equation 34, a simple 
relation is derived: 

Cp1 = CT2 ( 3 5 )  

Also, we have the following relation from Equations 21 and 34: 

K 2 

CT1 = C1, 2 ~ (36) 

Using the set of Equations 21, 30, 35, and 36 with numerical 
optimization on the fully developed channel flow and the homo- 
geneous shear flow, we determine model constants as follows: 

C~ = 0.14, tr, = 1 . 0 ,  tr~ = 1 . 4 ,  

Up1 = 1.65, CI, 2 = 1.9, CT1 = 1.5, CT2 = 1 . 6 5  

(37) 

On the other hand, from Equations 30 and 33, the model 
functions re2 and fr2 are given by: 

fP2 = 1 - 0.3fr 2 (38) 

fr2 = 1 - 0.13fr 2 (39) 

where R t =k2/ (VeT)  is the turbulence Reynolds number and 
fr2 = exp[-(Rt/12.5) 1/2 ] is one of the element functions to be 
defined later. The forms of Equations 38 and 39 are determined 
with reference to the model function in the k - e  model proposed 
by Coleman and Mansour (1993). Determining fP2 and fr2 as 
above, the decay low (Equation 23) is held all over the period of 
decay. Again, note that fP1 and fT1 are unity, both in the 
constant stress layer of wall turbulent flow and the homogeneous 
shear flow in the calculations shown in the Results and 
discussion section. 

Modeling near-wall turbulence 

For application of the turbulence model to calculate heat trans- 
fer from the solid wall, it is important that the model represents 
near-wall behavior of the turbulence quantities (Myong et al. 
1989; Youssef et al. 1992). In the vicinity of the wall, the 
molecular viscosity effect is superior to the turbulent mixing, and 
a strong anisotropic condition holds. In the present MTS model- 
ing, to represent these wall-proximity effects adequately, we 
introduce the following set of functions as an element of model 
functions: 

fwl = exp[-(y*/20) 2] (40) 

fw2 = exp[-(y*/3.3) 2] (41) 
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f~l = exp[ - ( R t / 8 0 )  2] (42) 

f,2 = exp[-(R, /12.5)  W2] (43) 

where (y* = y u J v ,  which was first introduced by Abe et al. 
(1994) in the k - e  model, denotes a nondimensional distance 
from the wall using the Kolmogorov velocity scale u~ = (veT)W4. 

Note that u~ > 0 is always assured in every turbulent flow. 
Hence y* is considered more suitable than y+ = u~y/v ,  which is 
most widely used in low-Reynolds number k - e  models, for 
computing complicated turbulent flows with separation or re- 
attachment where the friction velocity u~ is always zero. There 
may be a situation where appropriate definition of the unique 
wall distance y is impo,~sible in complex flow geometries. To 
avoid such a problem, i1~. is hoped that the model function is 
formulated without the wall distance y. However, we have not 
found an alternative parameter to y that is sufficient in both 
accuracy and simplicity. 'We are continuing efforts to develop a 
new wall parameter alternative to y. 

Next, we consider wail-limiting behavior of various turbulence 
quantities used in the present MTS model. Near-wall behavior of 
the total turbulent kinetic energy k and its dissipation rate e r is 
represented as expansions of powers around y = 0 (Chapman 
and Kuhn 1986): 

k = ay 2 + by 3 + O(y  4) (44) 

e r ( = e )  = 2va + 4vby + O(y 2) (45) 

where the coefficients a,, b, etc. are functions of x and z alone. 
In the same way, the near-wall expansions of k e and k r are 

given by assuming k e / k  and k r / k  as constants (or k p / k  r = 
const) in a narrow region in the vicinity of the wall as follows: 

kp 2 
ke = ---~[ay +by 3 + O(y4)] (46) 

k r  2 
k T = - ~ [ a y  + by. 3 q- O(y4)] (47) 

Hence, the wall-limiting behavior of ke~xy 2 and k r c t y  2 is 
maintained. Note that Equation 44 exactly leads to Equations 46 
and 47. The assumption that k e / k r  = const very near the wall is 
originated from the following arguments. First, very near the 
wall, turbulent energy faust change montonously in y-direction 
because of the negligible turbulent production. Hence, if we 
assume the ratio k e / k  r is variable, the alternative low- or 
high-wave number energy may quickly vanish as the wall is 
approached, and ee becomes nearly zero. This means the vanish 
of the energy cascade according to the MTS concept, which is 
illegitimate. 

The energy-transfer rate Equation 6 is deduced in the near- 
wall region as: 

02kp 
v ~ - ee = 0 (48) 

By substituting Equation 46 for Equation 48, we have the near- 
wall expansion of ep: 

ke 
ep = --~-[2va + 6vby + O(y2)] (49) 

From Equations 46 and 49, we have the wall boundary condition 
of ep as follows: 

epw = 2v((9 V~P 12 (50) 
~ (gY lw 

Multiple time-scale turbulence mode/." K Negano et aL 

On the other hand, the kr  Equation (7) in the near-wall 
region is given as follows: 

(92k T 
v ~ + ~e - er  +I Ik  = 0 (51) 

With Equations 47, 49, and 1, we have the expansion equation 
from Equation 51: 

e r = 2va + 6vby + O(y 2) + YI k (52) 

From a comparison of Equations 45 and 52, I1 k must have the 
near-wall behavior -2vby to balance the k r equation in the 
vicinity of the wall. Therefore, referring to Nagano and Shimada's 
(1993, 1995), k-8  model, we model the pressure diffusion terms 
lI k and H~ as follows: 

1 (9 [ k Oe r 
(53) 

(9[ ~r(gk ] 
II~ = C r 3 v ~ x  j (1-.fw2) T ~xj fw2 (54) 

where CT3 is a model constant and determined as 0.5. The 
pressure diffusion term Il~ (Equation 54) has the wall-limiting 
behavior I I ,  cxy °, which is in agreement with the DNS. From 
Equations 44 and 45, the boundary condition of the dissipation 
rate e r at the wall is determined as follows: 

(gY ]w 
(55) 

Equation 55 coincides with the boundary condition employed in 
the conventional near-wall k - e  models (Nagano and Tagawa 
1990; Myong and Kasagi 1990; Nagano and Shimada 1993, 1995). 
Equations 49 and 45 show that the following relation between ep 
and e r holds in the vicinity of the wall: 

8p kp 
~r k (56) 

This relation is exactly the same as Equation 29 in the homoge- 
neous decaying flow, and there seems to be a common situation 
of zero turbulent production. Equation (56) indicates that the 
characteristic time-scale describing eddy-viscosity in the present 
MTS model is now identical with the time-scale of the k - e  
model near the wall. Provided that the situation in Equation 56 
holds, the formulation of the eddy-viscosity becomes 

vt = Cvf~ kkp Cvfv k 2 
8p t3 T 

(57) 

Hence, the eddy-viscosity formulation near the wall is identical 
with that in the k - e  model and, consequently, the form of model 
function f~ can be analogized to that employed in a conventional 
low-Reynolds number k-8 model. Near the wall, v t cxy 3 holds, 
and Equations 44, 45, and 57 require near-wall behavior f~ ~xy- i. 
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We employed the following form of f~ to satisfy this wall-limiting 
behavior: 

fv = (1 -fwx)(1 + 14R~-3/4fr 1) (58) 

where the first half of the right-hand side is the Van Driest-type 
dumping function, the second half has the role of adjusting the 
length scale of eddy-viscosity in the vicinity of the wall, and f~l 
ensures that f~ = 1 far from the wall. From Equations 57 and 58, 
the eddy-viscosity formulation in the vicinity of the wall is de- 
duced as follows: 

k 2 
Vt ~y*2 __ R t  3 / 4  =y2kl/Z/xl(oCy3) 

ST 
(59) 

where -q = (v3//ST) 1/4 is the Kolmogorov length scale. Equation 
59 indicates that the dissipation process governs turbulent 
motion very near the solid surface. 

From a consideration of the wall-limiting behavior of the 
source and sink terms of Equations 8 and 9, the following model 
functions are proposed to avoid the divergence of equations near 
the wall: 

fP1 = 1 (60)  

fP2 = (] --fw2)(1 -- 0.3fr2) (61) 

fT1 = 1 - - fw2  (62) 

fr2 = (1 -f.,2)(1 - 0.13fr 2) (63) 

Note that re2 and fr2 contain model functions 38 and 39, 
respectively, to represent asymptotic behavior of turbulence 
quantities in the homogeneous decaying turbulence. 

It is now established from DNS data that the turbulent 
diffusion term increases in the vicinity of wall (e.g., see Cazalbou 
and Bradshaw 1993). However, a standard gradient diffusion-type 
model is less likely to predict this profile. To solve such a 
discrepancy, Nagano and Shimada (1993, 1995) proposed an 
additional model function ft with the turbulent diffusion term of 
k and s equations. Adopting this result into the present MTS 
model, the following model function is introduced into the turbu- 
lent diffusion term of each transport equation. 

ft = 1 + 3.5fr I (64) 

where C~2 is a widely used model constant with a value of 1.9, 
and f, is a model function equal to one at the initial period. 

From Equations 27 and 65, we derive 

ke C~2f~ -- C T 2 f T  2 
- -  = ( 6 6 )  
k Ce2f8 -- CT1 

At the initial period of decay, because all model functions in 
Equation 66 take value unity, we have an initial condition of 
kp /k  from Equation 66. Furthermore, the initial value of e e is 
obtained by substituting Equation 66 for Equation 29. 

Figure 2 shows the decay of turbulent energy k and its 
dissipation rate st ,  as compared with the DNS data of Iida and 
Kasagi (1993). For the initial conditions of each turbulence 
quantity, we use the DNS data at t = 2, at which the energy 
spectrum is well developed. The present model represents the 
asymptotic profiles of the initial period of decay; i.e., k at t -  1.1 

and s r ct t -21, and the agreement with the DNS data is almost 
complete. 

Furthermore, we continue the calculation downstream and 
compare the turbulence Reynolds number profile with the exper- 
imental data of Batchelor and Townsend (1948a, b) in the 
intermediate period of decay. As shown in Figure 3, the present 
model predicts well the experimental data both of Re u = 650 
and 1360. From the results presented in this subsection, it is 
concluded that the present MTS model predicts the homoge- 
neous decaying flow accurately. 

Homogeneous shear f low 

In this subsection, we explain the validity of the present MTS 
model, especially, in analyzing homogeneous turbulent shear 
flow. To determine the initial condition of k e / k  and se using 
available k, e r and -u-'~ data from the experiment or DNS data, 
we employ the asymptotic relation proposed by Kim and Benson 
(1992) in the homogeneous flow and under an equilibrium condi- 
tion where Pk/er  is nearly constant: 

ke Dke Pk-- e e  

kr Dkr Sp  -- S T 
(67) 

From Equations 1, 4 and 67, we have the initial value of the ratio 
k e / k  as follows: 

kp Pk 
- - =  (68) 
k Pk-- sr - C~(k2/u'db')S 

Results and discussion 

Homogeneous decaying f low 

First to check the fundamental performance of the model Equa- 
tions 6-9, we apply the present model to the homogeneous 
decaying flow. The deduced transport equations are given as 
Equations 24-27. Because these are ordinary differential equa- 
tions, we choose the 4th order Runge-Kutta method for solving 
them. 

From relation 29, the characteristic time-scale k e / s  P is iden- 
tical with the time-scale of k -e  model; i.e., k/ST. Hence, the 
profile of the dissipation rate obtained by solving Equation 27 
should be identical with the solution of the e equation of the 
k-e  model, that is: 

dsr = - C , ; L  e~ 
dx -'ff (65) 

l f f  , ' ~ , ~  • 

10-2 ",o,. 
Pr~tmt  model ~ " b . . . ,  

o • lida - KMagi (DNS) 
n I , I , I , 

2 3 4 5 
t 

Figure 2 Profiles of turbulent energy and dissipation rate 
during the initial period of decay (lida and Kasagi 1993) 
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Figure 3 Profile of turbulence Reynolds number in inter- 
mediate period (Batchelor and Townsend 1948a, b) 

where S is the mean shear rate, and the initial value of ee is 
obtained from Equations 68 and 4. 

The only difference between the transport equations of the 
homogeneous shear flow and those used in the homogeneous 
decaying flow is the exis~tence of a turbulent production term. 
Hence, the fourth-order Runge-Kutta method is once again 
employed as the calculation method. 

For comparison, we calculate conventional and recent turbu- 
lence models using the eddy-viscosity concept as follows: 
standard-type k-e model; nonequilibrium k-e model proposed 
by Yoshizawa and Nishizima (1993); zonal model for the homo- 
geneous shear flow proposed by Tzuoo et al. (1986); and MTS 
model proposed by Duncan et al. (1993). These models are 
solved by the same numerical method as the present model. 

Calculations of these models are carried out under conditions 
derived from three DNS ,data, as shown in Table 1: C128W and 
C128U simulation data given by Rogers et al. (1986), and CASE2 
simulation data presented by Matsumoto et al. (1994). Initial 
values of ke/k, kr/k,  and £p//e T from Equations 68 and 4 are: 
kpo/k o = 0.509, kTo/k o = 0.491, Spo/ero = 1.29 (C128W); 
keo/k o = 0.638, kro/k o = 0.362, epo/ero = 1.17 (C128U); 
keo/k o = 0.492, kro/ko = 0.508, epo/ero = 3.10 (CASE2). 

Figure 4 shows the calculation results on the condition of 
C128W presented by Rogers et al. (1986). It appears that the 
standard k-e  model predicts each quality as too great, and the 
nonequilibrium k-e model underestimates the time evolution of 
turbulence. However, the present and zonal k-e models predict 
DNS data quite well. In this flow condition, the recent MTS 
model proposed by Duncan et al. (1993) does not work at all 

Table I Initial conditions of calculation in homogeneous 
shear flows 

C128W C128U CASE2 
[DNS: Rogers [DNS: Rogers [DNS: Matsumoto 
et al. (1986)] et al. (1986)) et al. (1994)] 

v 0.02 0.01 7.692 X 10 -a 

S 56.568 28.284 1 Ova- 
St o 12.0 8.0 2.0 
k o 1.47 x 101 6.38 2.52 x 10-1 
8re 1.55 × 102 4 . 1 0 x  101 2 . 3 4 x  10 -1 
-u--~ o 4.36 2.14 8.52 x 10 -2 
kpo/k o 0.509 0.638 0.492 
kro/k o 0.491 0.362 0.508 
8p(y/RTO 1.29 1.17 3.10 
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Figure 4 Predictions of homogeneous shear f low (I) (Rogers 
et al. 1986; Yoshizawa et al. 1993; Tzuoo et al. 1986) 

because the application of Equation 67 with the employed eddy- 
viscosity formulation (Equation 3) causes the negative value of 
kp/k in the initial condition. The exclusion of Equation 67 
removes such inconsistency, but we have no other appropriate 
measures to determine the initial value of kp/k. 

Figure 5 shows the comparisons of turbulence models in the 
flow condition of the C128U simulation of Rogers et al. (1986). 
Figure 5 (a) shows the turbulent energy profile, where it appears 
that the present model is in best agreement with DNS data. 
Another four models give over- or underpredictions compared to 
the present model and DNS data. The result of Reynolds stress 
evolution shown in Figure 5 (b) indicates that the present model 
overpredicts slightly, while the zonal model marginally underpre- 
diets. The standard k-e model and Duncan's (1993) MTS model 
predict -u"v as too large, and the nonequihbrium k-e model 
gives a lower prediction in the same situation. 

The results of a comparison of five turbulence models with 
DNS data presented by Matsumoto et al. (1994) are shown in 
Figure 6. In this weak shear condition, the present model, zonal 
model, and nonequilibrium k-e model predict the DNS data 
correctly. Duncan's (1993) MTS model slightly overpredicts each 
quantity. However, the standard k-e  model completely failed to 
predict this flow, and even predicted -u'v to be four times 
greater than the DNS data at t = t 0. The erroneous prediction of 
the standard k-e model for homogeneous shear flow seems 
more remarkable as the mean shear becomes weaker. 
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Predictions of homogeneous shear flow (111) Figure 6 
(Matsumoto et al. 1994; Duncan et al. 1993; Yoshizawa et 
al. 1993; Tzuoo et al. 1986) 

The results in this subsection indicate that, first, the 
standard-type k - e  model totally fails in analyzing the homoge- 
neous shear flow, as previously ment ioned by Suzuki et al. (1993). 
Second, the nonequilibrium k - e  model permits a narrow range 
of flow conditions to obtain good results. Third, the MTS model 
proposed by Duncan et al (1993) overpredicts in each condition 
and sometimes loses the realizability constraint. The predictions 
of the present and zonal models have almost all proved accurate. 

Fully developed channel f low 

Next, we assess the model prediction of the fully developed 
channel flow. A comparison is made with the DNS data pre- 
sented by Kim (1990) at Re T = 395. Calculations are carried out 
in the half-width of the channel, and symmetric boundary condi- 
tion are imposed on all turbulence quantities at the center of the 
channel. Wall boundary conditions are represented as follows: 

Uw = kPw = k r , ,  = 0 (69) 

and Equations 50 and 55 are imposed for the Sew and e r , ,  
respectively. The numerical technique is based on the finite- 
volume method developed by Patankar  (1980) and Leschziner 
(1982). All the results shown here, such as 0 + =  U / u , , k  += 

- -  - -  2 + -  e r v / u ~ ,  nondimensionalized by k/u2~, - u v  + = - u v / u , ,  e r - are 
the friction velocity u r and the molecular viscosity v. 

Figure 7 shows the mean  velocity profile of the channel flow. 
The present model successfully predicts the universal velocity 

profile in the constant stress layer: U + = 2 . 5 1 n y + +  5.0. This is 
possible only is all the model constants in the present model 
equations satisfy the relational equations we derived in the 
Determinat ion of model constants section. Agreement  of the 
present model prediction with DNS data seems almost perfect. A 
profile of turbulent kinetic energy in the near-wall region is 
shown in Figure 8. The near-wall behavior k o~y 2 is correctly 

2o 

lO 

o 1 

Figure 7 

f ~  

~<°'~ i 

x , / , ' ~  

~ /  Present model 
J o Kim (DNS) 

. . . . . . . .  I . . . . . . . .  i . . . . . . . .  
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Mean velocity profile of channel flow (Kim 1989) 
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10 Dissipation rate profile of channel flow (Kim 

represented by the prescm model, and the calculations success- 
fully predict the DNS data. Figure 9 shows the comparison of the 
Reynolds shear stress prediction with DNS data in the near-wall 
region. The agreement of calculation results with DNS data is 
again almost perfect over the entire region of the channel, and 
the near-wall behavior -u'v~zy 3 is reproduced by the correct 
modeling of f~ in Equation 58. As already mentioned, the 
formulation f~ is similar to the model function f~ used in the 
low-Reynolds number-type k -e  model. This indicates that a 
similar modeling of wall turbulence is possible between the 
present MTS and conventional k-e models. The dissipation rate 
profile is shown in Figure 10. The negative sloped distribution of 
e r near the wall was first shown by the DNS data, and this 
profile is also well represented by the present model. 

Figure 11 presents a profile of the parameters used in the 
present MTS model. The relation kp > k r indicates that the 
larger eddies have much turbulent kinetic energy far from the 
wall. But in the near-wall region, the relation is inverted because 
of the disappearance of energy production from the effect of a 
solid surface. This indicates that the dissipation process predomi- 
nates over turbulence motion in the vicinity of the wall, as shown 
in Equation 59. This is also evident in the profile of the ratio 
8e/e r in the same figure. In the constant stress layer, ep/e r = 1 
holds because of the local equilibrium state, but as the wall is 
approached, the ratio again becomes greater. However, very near 
the wall, the dissipation rate e r is superior to the energy transfer 

rate e/,, and the ratio is numerically identified with ke /k  at the 
wall as seen in Equation 56. 

Turbulent boundary layer under various 
pressure gradients 

Finally, we tested the present model for the turbulent boundary 
layer with and without pressure gradient. The numerical tech- 
nique is similar to that used for the channel flow. However, 
information on the velocity field outside the boundary layer is in 
accord with the corresponding DNS and experimental data. Cal- 
culations of zero-pressure gradient (ZPG: dP/dx  = 0) and favor- 
able pressure gradient (FPG: dP/dx  < 0) flow are made by 
imL~osing the nondimensional acceleration parameter K = 
(dU=/dx)v/U~ associated with DNS by Spalart (1986, 1988). The 
calculation of adverse pressure gradient (APG: dP/dx  > 0) flow 
is made by imposing a profile of static pressure coefficient 
Cp =- 2(P - P0)/P002 from the experimental data of Nagano et 
al. (1993) and Samuel and Joubert (1974). All results are out- 
putted when the momentum thickness Reynolds number R 9 
coincides with corresponding DNS or experimental data. 

It is reported that the low-Reynolds number-type k-e  model 
gives a poor prediction of the APG flow, because the turbulent 
length-scale profile in the near-wall region is greatly affected by 
the pressure gradient condition (Rodi and Scheuerer 1986). It is 
thought that this discrepancy is because of the sensitivity of the 
dissipation rate equation to the pressure gradient. Under APG 
conditions, an approximation equation - -~/u~ = 1 is no longer 
supported, and the model constants optimized under the con- 

- ~  ] 

10 -2 

10-4 

l O - S  

Figure 9 
1989) 

P r e s e n t  m o d e l  

o K i m  ( D N S )  

• , , ~ / . . . t  . . . . . . . .  I . . . . . . . .  I . . . . . . . .  i . . . .  ~,= 

10 "l I0 10 a 
y + 

Near-wall  behavior of Reynolds shear-stress (Kim 

~o 

~o 

Figure 11 

........ kp/k 

kr/k 

. . . . . . . .  | . . . . . . . .  I . . . . . . . .  i . . . . . . . .  t 

10  "z 10 y+ 

Variation of parameters in a channel 

Int. J. Heat and Fluid Flow, Vol. 18, No. 4, August 1997 355 



Multiple time-scale turbulence modeL" Y. Nagano et aL 

6O 
i 

50 

40 

30 

20 + 

10 

o 

0 

o 

0 

0 

Rs Present model 

3350 o (APG:Exp.) 

- 2260 o (APG:Exp.) 

1880 . . . . . . . .  o (AVG:Zxp.) 

1410 • (ZPG:DNS) 
690 . . . . . .  A (FPG:DNS) 
415 v (FPG:DNS) 

K x 10 s 

0 
1.5 

o O  2.5 ~ ,  
7 

o/ 

/ 

. . . . .  , . . . . . . . .  , . . . . .  . . J  

I0 I02 10 a y+ 
Figure 12 Mean velocity profiles of boundary-layer f low 
under pressure gradients 

stant stress condition then become meaningless. In the present 
MTS model, that same error occurs in the e e  equation, because 
Equation 15 is used for the determination of model constants. To 
resolve such a discrepancy, Hanjalid and Launder (1980) take 
into account the energy production from irrotational strain, 
which increases in proportion to the deceleration of mean veloc- 
ity, with a model coefficient greater than that for the energy 
production term from rotational shear strain. We follow this 
concept and improve the production term of the present e p  
equation as follows: 

e p  _ _  OU e e .~. ~ a U  
-. (70) 

where C~, 1 = 2.8, that is, 70% greater than Cp1. 
Because the present model is not a nonlinear eddy-viscosity 

type, the normal stress difference (u -'2 - b  "~) is calculated by an 
ASM similar to the calculation of the k-e  model by Nagano and 
Tagawa (1990). Details of the ASM we employed are described in 
the appendix. We restrict the use of the ASM only to the 
calculation of normal stresses, not shear stress, which can be 
obtained by the present model with high accuracy. (Developing a 
nonlinear MTS model is in progress to calculate flows subjected 
to strong pressure gradients without the aid of an ASM model.) 

Figure 12 shows changes in the mean velocity profile under 
various pressure gradients. In the ZPG condition represented as 
R 0 = 1410 in Figure 12, the present model produces a universal 
velocity profile, U+ = 2.44in y+ + 5.0, which agrees well with DNS 
data. The results of the FPG flows where R o = 690 and 415 (the 
corresponding acceleration parameter K are 1.5 × 10 -6 and 
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F i g u r e  ?3  Reynolds shear-stress profile of boundary-layer 
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2.5 x 10 -6, respectively) reveal that the velocity profile deviate 
upward from the log-law of the mean velocity profile in agree- 
ment with DNS data very well. 

Nagano et al. (1993) report that a downward deviation from 
the universal velocity profile is observed in the APG flow experi- 
ment. As shown in Figure 12, the present model well represents 
this profile of APG flow at R o = 1880, 2660, and 3350. This 
remarkable effect is introduced by using y* as a nondimensional 
distance from the wall in the model functions Equations 40 and 
41 with reference to Abe et al. (1994). As the pressure gradient 
increases, the dissipation rate is reduced, and then y* decreases. 
Hence, the model function profiles shift to a positive y-direction, 
thus indicating that the buffer layer becomes thicker. This is in 
good agreement with the experimental result. 

The Reynolds shear-stress profile is shown in Figure 13. The 
profile on ZPG flow is almost identical to DINS data. For FPG 
flows, DNS data are available only at R 0 = 690. The present 
model predicts the decrease of turbulent shear stress under the 
acceleration of mean velocity. 

In APG flows, the constant stress layer seems to vanish 
entirely, and -~'~ profiles peak at the outer edge of the inner 
layer. The present model predicts this profile by improvement of 
the e e production term as Equation 70. If the production term 
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Figure 14 Skin-friction coefficient profile of adverse pres- 
sure gradient f low (Nagano and Tagawa 1990; Samuel and 
Joubert 1974) 
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from irrotational strain is omitted, the velocity and the Reynolds 
shear-stress profile deviate from the measurements in the outer 
layer (not shown). In conditions of DNS by Spalart (1986), 
however, results of FPG flow are less changed by omission of 
Equation 70. Figure 14 shows the skin-friction coefficient Cfo - 
,tw/(pU~/2) profile according to the condition of experimental 
data by Samual and Joubert (1974). The present model predicts 
the Cf0 profile to the farthest downstream position, similar to 
the k - e  model by Nagano and Tagawa (1990). 

These results demonstrate that the present MTS model makes 
fairly good predictions for the boundary-layer flow under pres- 
sure gradients. They also indicate that it shows an impressive 
performance for wall turbulence. 

Time-scale distribution in various f lows 

From the results presented above, the present MTS model 
demonstrates versatility in analyzing the various flow fields. In 
predicting homogeneous shear flow, the difference in capability 
between the present model and the standard k-~ model stands 
out. The strongest evidence of the superiority of the present 
model is the time-scale estimation. 

Hereafter, we symbolize the characteristic time-scale em- 
ployed in the present model as % = k e / e  e, and that of the k -e  
model as ~r k = k / e  r. Figure 15 is a profile of this ratio %/rk 
arranged in Pk/er,  which is one of the parameters of the flow 
condition. At a position of Pk/er  = 0 as the homogeneous decay- 
ing flow, and on the solid wall, % is equal to "r k from Equations 
29 and 56. The profile of %/% indicates that as the production 
rate rises, the characteristic time-scale must be reduced from "rk, 
which is the standard time-scale estimation in the conventional 
k-e  model. For the standard k - e  model, the time-scale ratio 
cannot change from the value unity, as plotted in Figure 15. 
Hence, the standard k -e  model overpredicts in each condition in 
homogeneous shear flows. 

When the time-scale ratio is multiplied by the model constant 
Q ,  we have 

% k e / s e  Ice er 
C~ - -  = C~ ~ = C, - - -  - -  (71) 

T k k / 8  r k 8p 

which coincides with the C~, (Equation 5). Hence, the time-scale 
ratio is proportional to C~. However, in the wall-bounded flow, 
%/'r k is not exactly proportional because of the influence of the 
model function f~. Rodi (1984) shows that C~ is a function of 
Pk/Sr and presents a figure of the curve. From the result of 
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Figure 15, the Cg profile is not expected to be a simple function 
of Pk/er.  However, a tendency for Cg to decrease as the value 
of Pk/er  increases is verified by the computational results of the 
present MTS model. 

Conclusions 

In this paper, a new application of the multiple time-scale (MTS) 
turbulence model using the eddy-viscosity approximation is pro- 
posed for solving both wall and homogeneous shear flows. We 
model the near-wail turbulence using model functions to repre- 
sent the near-wall behavior of turbulence quantities correctly, as 
the recent low-Reynolds number k-e  model does. Furthermore, 
we derive relational equations among the model constants and 
determine these values theoretically. This work establishes a 
solid foundation for a low-Reynolds number MTS turbulence 
model using the eddy-viscosity concept. 

We tested the proposed MTS model as it applies to various 
wall and homogeneous flows, and comparisons were made with 
recently available DNS and experimental data. The most notable 
difference between the present model and the conventional k -e  
model was found in prediction of homogeneous shear flow. It is 
concluded that this difference is not caused by a discrepancy in 
the eddy-viscosity approximation, but originates in the estimation 
of the characteristic time-scale. The profile of that time-scale in 
the present MTS model is shown. Furthermore, compared with 
some recently proposed k -e  and MTS models, the proposed 
model demonstrates excellent versatility under various flow 
conditions. 

Finally, we find that the profile of the characteristic time-scale 
estimated by the present model is qualitatively identical to the 
C~ map presented by Rodi (1984). In conclusion, a turbulence 
model employing the eddy-viscosity concept is useful for analyz- 
ing the wall and homogeneous shear flows. However, this re- 
quires correct estimation of the characteristic time-scale suitable 
for various flow conditions, a requirement achieved by the 
present MTS turbulence model. 
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Appendix: algebraic stress model 

In the calculation of boundary-layer flows with adverse pressure 
gradient (APG), the present model is applied with aid of the 
algebraic stress model (ASM) for obtaining the normal stresses 
in Equation 70. We used the same ASM as Nagano-Tagawa 
(1990) employed in their investigation. 

The structural parameter Uiuj/k is experimentally observed 
to be less changed in APG flow (Bradshaw 1967). Hence, the 
following ASM model (Rodi and Scheuerer 1983) is valid. 

UiUj 
k (PK-- ~) =Pi~ + % + ~J (A1) 

where Pii = U--(~iUkOUj//OXk'~UjUkOUii/OX k) is the production 
rate of ~ ,  and the dissipation rate eij is modeled as 8ij = 
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(2/3)~iye [= (2/3)~O-er]. For the pressure-strain term ~bij, we 
have chosen the isotropic production model of Launder (1985): 

t~i j = t~ij, 1 "t- t~ij, 2 -]- t~ij, w 

(~ij,! = - ' C l ( ' ~ / / k ) ( u - ~  - 2 ~ i j k  ) 

t~ij,2 = . _ C 2 ( P i j -  2 ~i~Pk) (A2) 

The wall effect for ~bi / in Equation (A2) is modeled as follows 
(Gibson and Launder 1978): 

f~ij,w - -  t - ~ i j ,  1 + 4,' j ,  2 

Optij, 1 = C~(e/k  )(Ukumnknm~ij - 3 UkUinkny - ~ ~kUynkni)f  

¢Dtij, 2 = Ct2(t~km,2 nknm~iy - ~ dpik,2nkn i - ~ dpjk,2nkni) f (A3) 

where f = k3/2(O.O9)3/4/eyk is the model function, n i = 1 (in the 
direction normal to the wall), and n i = 0 (otherwise). Model 
constants in Equation (A2) are optimized by Younis's systematic 
investigation (Launder 1985) as C 1 = 3.0, C 2 = 0.3, and the 
constants in Equation (A3) are chosen as C~ = 0.75, C~ = 0.5 
(Gibson and Younis 1986). 
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